Physics 201

48 pts Name _

Exam 1 – Electrostatics

February 16, 2010

This is a closed book examination but during the exam you may refer to a 3"x5" note card with words of wisdom you have written on it. There is extra scratch paper available. Please <u>explain</u> your answers. Your explanation is worth 3/4 of the points on all questions.

A general reminder about problem solving:

A general terminder about problem solving.	
 Focus Draw a picture of the problem What is the question? What do you want to know? List known and unknown quantities List assumptions Physics Determine approach – What physics principles will you use? Pick a coordinate system Simplify picture to a schematic (if needed) Plan Divide problem into sub-problems 	 Modify schematic and coordinate system (if needed) Write general equations Execute Write equations with variables Do you have sufficient equations to determine your unknowns? Simplify and solve Evaluate Check units Why is answer reasonable? Check limiting cases! Show All Your Work!

The next two questions concern an electron (charge $-q_e$) and an alpha particle (charge $+2q_e$) that are separated by 16 nm in a region of space without any other charges.

- 1. [4 PTS] Compare the electrostatic force on the alpha particle, F_{α} , and the force on the electron, F_{e} .
 - a) $4F_e = F_\alpha$
 - b) $2F_e = F_\alpha$
 - c) $F_e=2F_a$
 - d) $F_e=4F_a$

none of these

Explain:

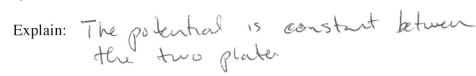
2. [4 PTS] The electron and alpha particle are moved apart so they are now separated by 33 nm.

- a) F_e increases and F_{α} decreases
- b) F_e decreases and F_{α} increases
- \bigotimes Both F_e and F_α decrease
- d) Both F_e and F_{α} increase
- e) none of these

Explain:

$$F \propto \frac{1}{\Gamma^2}$$
 so force decreases
 $F_e = |F_{ac}|$ in fact $\overline{F}_e = -\overline{F}_a$

- 3. [4 PTS] A single point charge (Q) is located at the center of an imaginary sphere of radius 1m and a much larger imaginary cylinder of diameter 2 m and side length 10 m. Compare the electric flux through each.
 - a) The electric flux is zero through both the sphere and cylinder.
 - b) The magnitude of the electric flux is greater through the sphere.
 - c) The magnitude of the electric flux is greater through the cylinder.
 - There is the same positive electric flux through both the sphere and cylinder.
 - e) There is the same negative electric flux through both the sphere and cylinder.
 - f) None of these.


	Both volumes	inclose Q	so since
Explain:	The gene	Plan Har	same and positive
6	The Es	flux is the	V
The next two questions concern a hollow	metal cube that is placed b	between two μ A	· B 1

1

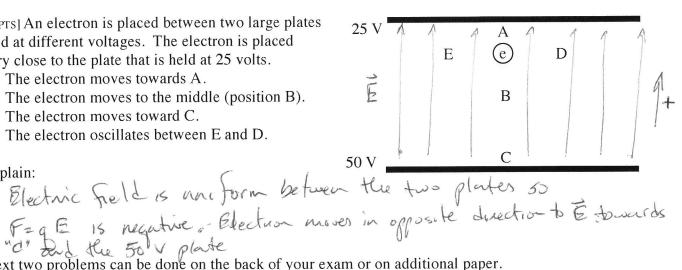
Batton far - charges ner distribute

The next two questions concern a hollow metal cube that is placed between two large charged plates. Both plate A and plate B are held at 90 volts. The plates are separated by 90 cm and the metal cube is placed 30 cm from plate A (so the cube is closer to plate A).

- 4. [4 PTS] The potential on the surface of the metal cube
 - a) is 120 volts.
 - is 90 volts.
 - c) is 30 volts.
 - d) must be zero.
 - e) can not be determined. More information is needed.

- 5. [4 PTS] The electric field inside the metal cube
 - a) is proportional to $1/r^2$
 - b) is positive pointing towards plate A.
 - is zero.
 - d) is positive pointing towards plate B.
 - e) can not be determined without the size of the cube.

6. [4 PTS] A large neutral metal disk is placed on an insulating post. A negatively charged balloon is brought near it - but does not touch it. The balloon is taken away. The disk is now


Bullos Noar => induces charge to move but Zg=0 (nentral)

- a) charged but we cannot know its polarity.
- (b) neutral (has no net charge).
- c) negatively charged.
- d) positively charged.
- e) none of these.

Explain:

- 7. [4 PTS] An electron is placed between two large plates held at different voltages. The electron is placed very close to the plate that is held at 25 volts.
 - a) The electron moves towards A.
 - b) The electron moves to the middle (position B).
 - M The electron moves toward C.
 - d) The electron oscillates between E and D.

Explain:

The next two problems can be done on the back of your exam or on additional paper.

- 8. [10 PTS] An electron that is initially at rest is placed between two parallel plates. At time t = 0sec an electric field (0.5 kN/C) is turned on between the plates. Note: $q_e = -1.6 \times 10^{-19}$ C and $m_e = 9.1 \times 10^{-31} \text{ kg}.$
 - a) What is the velocity of the electron after it has traveled 30 cm?
 - b) How long does it take to travel 30 cm? NOTE: Think kinematics.
- 9. [10 PTS] A ball of negative charge has a constant charge density, $7.6 \times 10^{-3} \text{ C/m}^3$. The ball has a radius $R_B = 30$ cm.
 - a) Draw a graph of the electric field inside and outside the sphere?
 - b) What is the potential difference between $r_1 = 10$ cm and $r_2 = 20$ cm?
 - c) What is the potential difference between $r_1 = 40$ cm and $r_2 = 60$ cm?

Possibly useful mathematical relationships:

Law of Cosines $c^2 = a^2 + b^2 - 2ab\cos(\theta)$ which for $\theta = 90^\circ$ is the Pythagorean theorem $c^2 = a^2 + b^2$ Trigonometric identities:

 $\sin^2(\theta) + \cos^2(\theta) = 1$ $sin(2\theta) = 2sin(\theta)cos(\theta)$ $\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)$

Derivative $\frac{d}{du}Cu^n = nCu^{n-1}$ and anti-derivative (integral) $\int Cu^n du = \frac{1}{n+1}Cu^{n+1} + const.$ of a polynomial Derivative $\frac{d}{du}k\sin(au) = ka\cos(au)$ and integral $\int k\sin(au)du = -\frac{k}{a}\cos(au) + const.$ of the sine function Derivative $\frac{d}{du}k\cos(au) = -ka\sin(au)$ and integral $\int k\cos(au)du = \frac{k}{a}\sin(au) + const.$ of the cosine function The Chain Rule $\frac{d}{dz}f(u) = \frac{d}{dz}u\frac{d}{du}f(u)$

3

$$R_{B} = 30 \text{ cm}$$

$$R_{B} = 30 \text{ cm}$$

$$P(r) = P_{0} = 7.6 \times 10^{3} \text{ C}$$

$$M^{3}$$
Use Gauss' Law to find \vec{E}

$$\int \vec{E} \cdot d\vec{A} = \vec{P}_{6} = \frac{Q_{enc}}{E_{0}} \qquad choose spherical symmetry$$

$$Inside \qquad F_{2} \cdot 4\pi r^{2} = \frac{1}{E_{0}} \int P_{0} + \pi r^{2} dr = -4\pi P_{0} \int r^{2} dr$$

$$E = f_{0} \cdot r \cdot \hat{r} \qquad V_{n} = \int \vec{E} \cdot d\vec{r} = \frac{P_{0}}{E_{0}} \int r \cdot dr = \frac{P_{0}}{E_{0}} r^{2}$$

$$F = f_{0} \cdot r \cdot \hat{r} \qquad V_{n} = \int \vec{E} \cdot d\vec{r} = \frac{P_{0}}{E_{0}} \int r \cdot dr = \frac{P_{0}}{E_{0}} r^{2}$$
How table

$$E = \frac{1}{E_{o}} \int_{R_{o}}^{R_{o}} \frac{1}{r^{2}} = \frac{1}{E_{o}} \int_{R_{o}}^{R_{o}} 4\pi r^{2} dr = \frac{4\pi}{E_{o}} \int_{R_{o}}^{R_{o}} \frac{1}{r^{2}}$$

$$E = \frac{1}{F_{o}} \int_{R_{o}}^{R_{o}} \frac{1}{r^{2}} \int_{R_{o}}^{R_{o}} \frac{1}{r^{2}} \int_{R_{o}}^{R_{o}} \frac{1}{r} + eonst,$$
Boundary Conditions
$$V_{in}(R_{o}) = V_{init}(R_{o})$$

$$V_{out}(\omega) = 0 \quad so \quad V_{out} = \frac{1}{P_{o}} \frac{R_{o}}{R_{o}}$$

$$V_{out}(\omega) = 0 \quad so \quad V_{out} = \frac{1}{P_{o}} \frac{R_{o}}{R_{o}}$$

$$\frac{1}{r^{2}} \int_{R_{o}}^{R_{o}} \frac{1}{r} + \frac{1}{P_{o}} \frac{R_{o}}{R_{o}} = \frac{2P_{o}}{R_{o}} \frac{R_{o}}{R_{o}}$$

$$\frac{1}{r} \int_{R_{o}}^{P_{o}} \frac{R_{o}}{R_{o}} = Const$$

$$\frac{V_{r}}{\sqrt{x r^{2}}} = \frac{R_{s}}{\sqrt{r}}$$

$$\frac{V_{r}}{\sqrt{r}}$$

$$\frac{V_{r}}{\sqrt{r^{2}}} = \frac{1}{\sqrt{r}} = \frac{3.85 \times 10^{-12} \text{ c}^{2}}{\sqrt{m^{2}}}$$

$$K_{o} = \frac{3.85 \times 10^{-12} \text{ c}^{2}}{\sqrt{r}}$$

$$K_{o} = \frac{3.95 \times 10^{-12} \text{ c}^{2}}{\sqrt{r}}$$

(b)
$$\frac{2n\sin 2}{r_1 = 0.1 \text{ m}} r_2 = 0.2 \text{ m}$$

 $\frac{4}{660} r_1^2 = \frac{1}{660} r_2 \int_{-1}^{2} r_2^2 r_$

$$\frac{0.12}{5} = -6.4 \times 10^{6} \text{ V}$$